

Duke Department of Biostatistics & Bioinformatics Duke University School of Medicine

Assessing the reporting of binary effect measures in CRTs: results from a crowdsourced methods based review

Elizabeth L. Turner, Joanne McKenzie, Stephen Nash, Andrew Forbes, Karla Hemming on behalf of all participants of the crowd-sourced methods based reviews

With big thanks to co-authors from Duke University: Alyssa Platt, John Gallis and Kaitlin Tetreault and to Christina Easter from University of Birmingham

Background

EXAMPLE OF REPORTING OF BINARY OUTCOME IN A CRT

Background

- Cluster randomised trials (CRTs) used to evaluate complex & community-based interventions
- CRTs analysis methods more complex than for iRCTs
- Binary outcomes common in CRTs
- CRT analysis methods even more challenging for binary
- CONSORT statement on reporting of binary outcomes
 - -Point 17b: "both relative and absolute"

Dulke global health

Example – CRT with common binary outcome

RESEARCH ARTICLE

Improving rational use of ACTs through diagnosis-dependent subsidies: Evidence from a cluster-randomized controlled trial in western Kenya

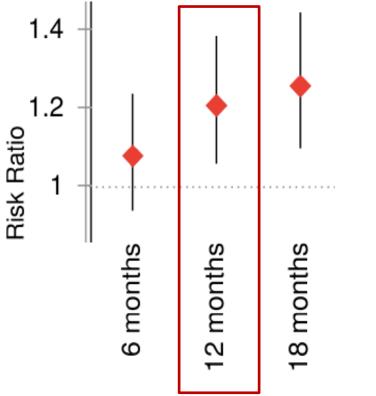
Wendy Prudhomme O'Meara^{1,2,3}*, Diana Menya³, Jeremiah Laktabai^{4,5}, Alyssa Platt^{2,6}, Indrani Saran², Elisa Maffioli^{2,7}, Joseph Kipkoech⁵, Manoj Mohanan^{2,7,8}, Elizabeth L. Turner^{2,6}

RESEARCH ARTICLE

Improving rational use of ACTs through diagnosis-dependent subsidies: Evidence from a cluster-randomized controlled trial in western Kenya

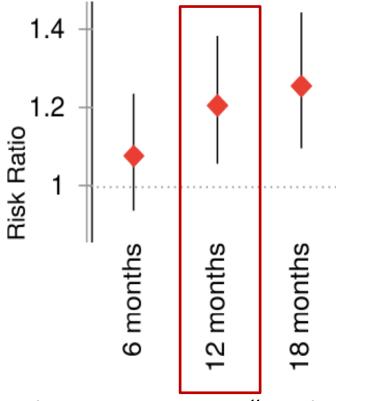
Wendy Prudhomme O'Meara^{1,2,3}*, Diana Menya³, Jeremiah Laktabai^{4,5}, Alyssa Platt^{2,6}, Indrani Saran², Elisa Maffioli^{2,7}, Joseph Kipkoech⁵, Manoj Mohanan^{2,7,8}, Elizabeth L. Turner^{2,6}

- 32 communities
- FU: 6, 12 and 18 months
- ~2000 febrile participants/FU
- Primary outcome:
 - "Testing uptake" at 12 mths
- Common primary outcome:
 - 51% int. vs. 43% control

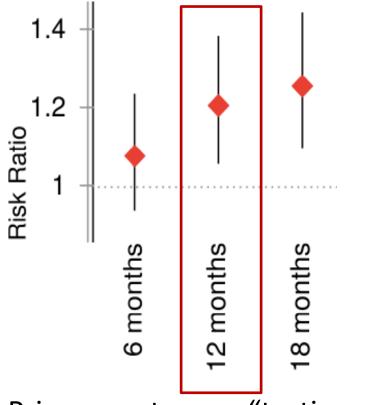


Dulke global health

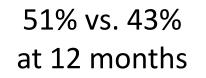
Example – CRT with common binary outcome

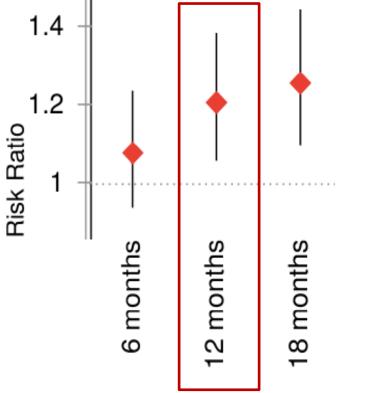

51% vs. 43% at 12 months

51% vs. 43% at 12 months

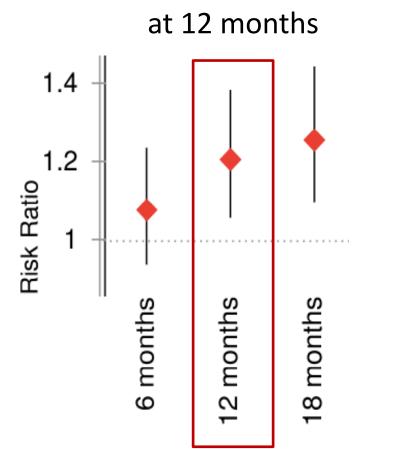


- Abstract
 - Both relative & absolute
 - Relative: risk ratio (RR)
 - Absolute: risk difference (RD)


51% vs. 43% at 12 months

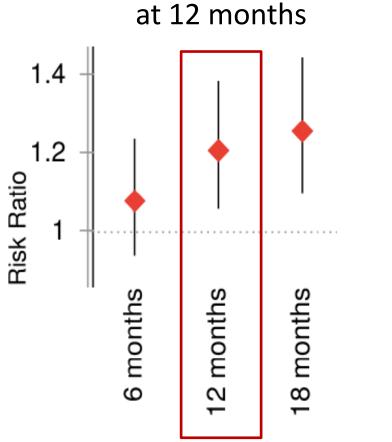


- Abstract
 - Both relative & absolute
 - Relative: risk ratio (RR)
 - Absolute: risk difference (RD)
- Tables in main text
 - Both RR and RD



Abstract

- Both relative & absolute
- Relative: risk ratio (RR)
- Absolute: risk difference (RD)
- Tables in main text
 - Both RR and RD
- Figures
 - RR only



51% vs. 43%

- Common outcome
 - RD (95% Cl): +9pp (+2,+15)
 - RR (95% CI): 1.20 (1.05,1.38)
 - OR > RR and approx. 1.49

51% vs. 43%

Primary outcome: "testing uptake"

Common outcome

- RD (95% Cl): +9pp (+2,+15)
- RR (95% CI): 1.20 (1.05,1.38)
- OR > RR and approx. 1.49
- If interpreted OR as RR, would over-state magnitude of association of intervention and primary outcome

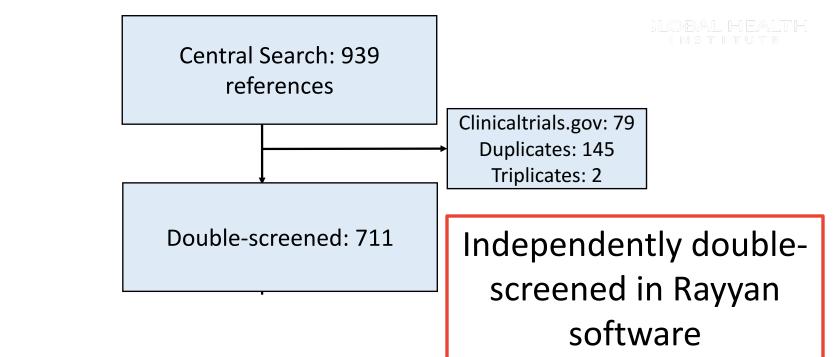
Goals of "crowd-sourced" methods review of binary outcomes in CRTs

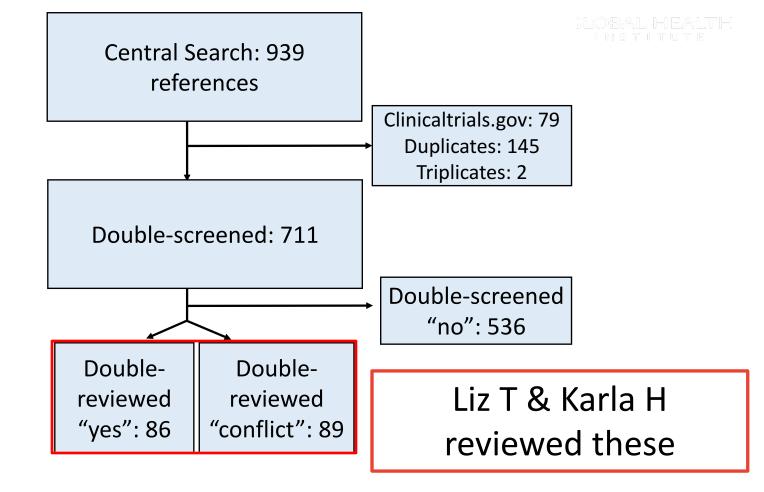
- 1. Summarize effect measures for binary outcomes in CRTs
- 2. Compare to CONSORT recommendations
- 3. Summarize the statistical methods used
- 4. Identify opportunities to raise awareness of issues and to clarify methods to the community
- 5. Highlight the pros and cons of the "crowd-sourced" approach

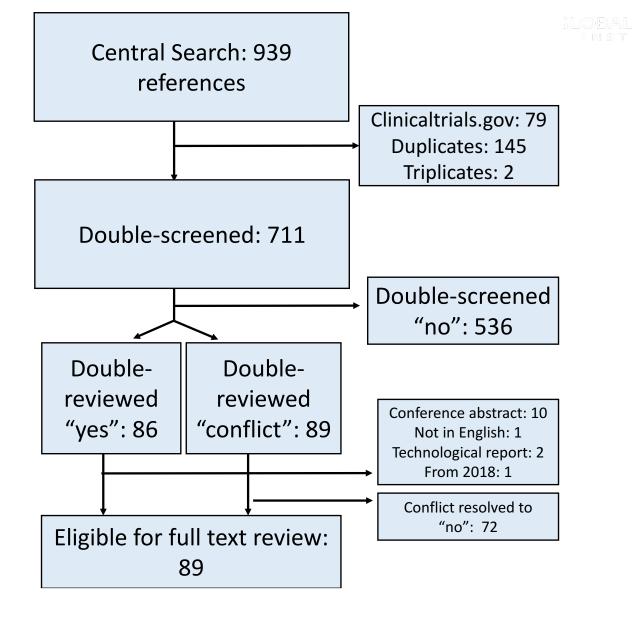
Methods

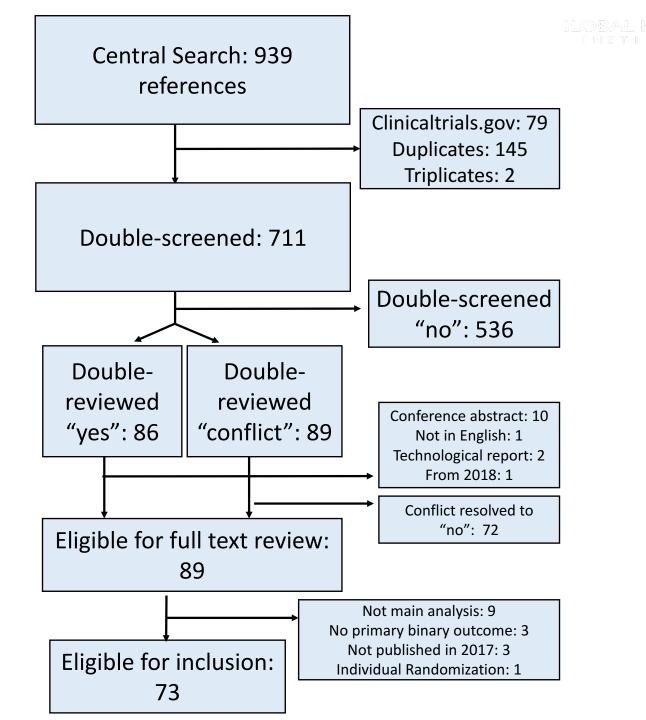
REVIEW OF REPORTING OF BINARY OUTCOMES IN CRTs

Methods – Inclusion criteria


- Two-arm parallel CRT with ≥ 1 binary primary outcome
 - No stepped-wedge, crossover, factorial designs
- Main analysis of "definitive" CRT
 - No pilot/feasibility CRTs
 - No secondary or subgroup papers
- Peer-reviewed report in 2017 (either online or "in print")
 - No conference proceedings or only on trial registration website

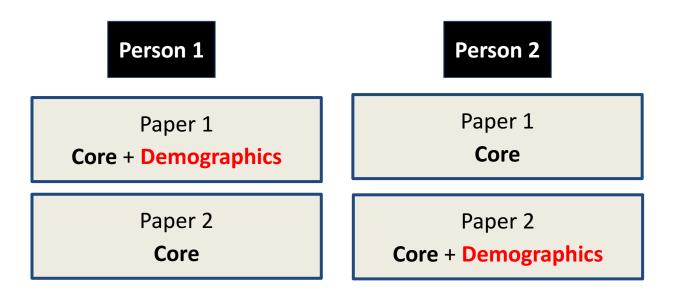






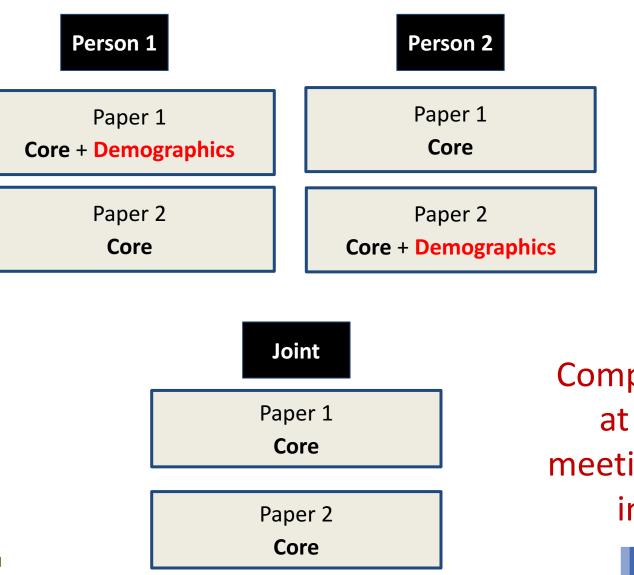
Duke GLOBAL HEALTH

Duke GLOBAL HEALTH


Methods – Data abstraction – Process for each article

Dulke | global health institute

Methods – Data abstraction – Process for each article


Completed independently online via Recap before in-person meeting

Dulke global health

Methods – Data abstraction – Process for each article

Completed jointly at in-person meeting & entered in Redcap

Methods – Data reconciliation – "Crowd-sourcing"

- Three in-person meetings
 - Last year's QMUL conference (Nov '18)
 - Duke University Biostatistics Core (March '19)
 - University of Birmingham CTU (April '19)
- Initially planned only QMUL meeting
 - Added two extra to enable us to extract data from all N=73 articles
- Overall, 85 reviewers participated
 - Many of you here today
 - Thank you!

Methods – Challenges

• Unfunded project = difficulty protecting time

- Data cleaning
 - Skip patterns and comments
- Additional data extraction
 - Duke team extracted additional data from all 73 articles
 - Including whether CONSORT mentioned in CRT report

Results

REVIEW OF REPORTING OF BINARY OUTCOMES IN CRTs

* Not mutually exclusive

Duk

Characteristic	ID) (%) al he
Highest career level	
Student (PhD/MSc)	35 (42.7%)
Researcher (Post-doc & MSc-	level) 27 (32.9%)
University Prof.	20 (24.4%)
Main role	
Methodologist (Statistician)	68 (84%)
Trialist/Other	13 (16%)
Type of work setting*	
Healthcare	16 (18.8%)
University	71 (83.5%)
Country of work	
United Kingdom	51 (62.2%)
United States	19 (23.2%)
Other	12 (14.1%)
Previous CRT experience	
None	27 (32.9%)
1-2 CRT	28 (34.2%)
≥ 3 CRTs	27 (32.9%)

* Not mutually exclusive

Characteristic	Dit ka N(%) al heat
Highest career level	
Student (PhD/MSc)	35 (42.7%)
Researcher (Post-doc & MSc-le	vel) 27 (32.9%)
University Prof.	20 (24.4%)
Main role	
Methodologist (Statistician)	68 (84%)
Trialist/Other	13 (16%)
Type of work setting*	
Healthcare	16 (18.8%)
University	71 (83.5%)
Country of work	
United Kingdom	51 (62.2%)
United States	19 (23.2%)
Other	12 (14.1%)
Previous CRT experience	
None	27 (32.9%)
1-2 CRT	28 (34.2%)
≥ 3 CRTs	27 (32.9%)

* Not mutually exclusive

Duk

Characteristic	
Highest career level	
Student (PhD/MSc)	35 (42.7%)
Researcher (Post-doc & MSc-	level) 27 (32.9%)
University Prof.	20 (24.4%)
Main role	
Methodologist (Statistician)	68 (84%)
Trialist/Other	13 (16%)
Type of work setting*	
Healthcare	16 (18.8%)
University	71 (83.5%)
Country of work	
United Kingdom	51 (62.2%)
United States	19 (23.2%)
Other	12 (14.1%)
Previous CRT experience	
None	27 (32.9%)
1-2 CRT	28 (34.2%)
≥ 3 CRTs	27 (32.9%)

* Not mutually exclusive

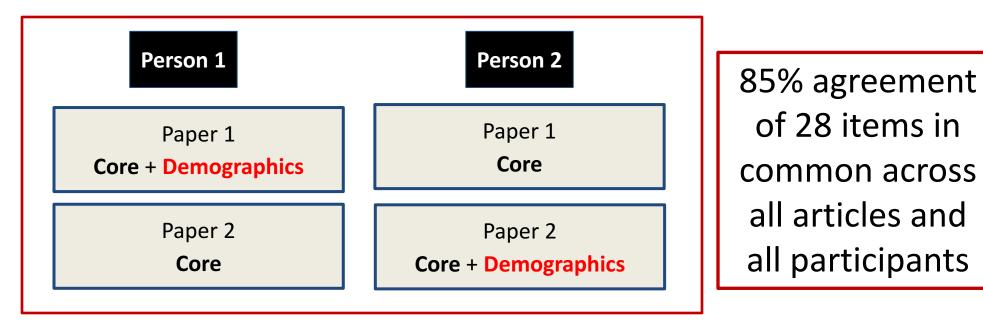
Duk

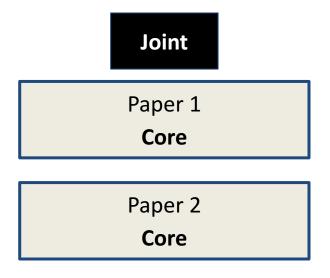
Characteristic	
Highest career level	
Student (PhD/MSc)	35 (42.7%)
Researcher (Post-doc & MSc-l	evel) 27 (32.9%)
University Prof.	20 (24.4%)
Main role	
Methodologist (Statistician)	68 (84%)
Trialist/Other	13 (16%)
Type of work setting*	
Healthcare	16 (18.8%)
University	71 (83.5%)
Country of work	
United Kingdom	51 (62.2%)
United States	19 (23.2%)
Other	12 (14.1%)
Previous CRT experience	
None	27 (32.9%)
1-2 CRT	28 (34.2%)
≥ 3 CRTs	27 (32.9%)

* Not mutually exclusive

Characteristic	N (%)AL HEA
Highest career level	
Student (PhD/MSc)	35 (42.7%)
Researcher (Post-doc & MSc-level)	27 (32.9%)
University Prof.	20 (24.4%)
Main role	
Methodologist (Statistician)	68 (84%)
Trialist/Other	13 (16%)
Type of work setting*	
Healthcare	16 (18.8%)
University	71 (83.5%)
Country of work	
United Kingdom	51 (62.2%)
United States	19 (23.2%)
Other	12 (14.1%)
Previous CRT experience	
None	27 (32.9%)
1-2 CRT	28 (34.2%)
≥ 3 CRTs	27 (32.9%)

Dulke Global Health


Results – Agreement for common items across N=73 articles



Dulke Global health

Results – Agreement for common items across N=73 articles

Duke D Duke Univ

Results -CRT Basic Characteristics (N=73)

* Not mutually exclusive

Characteristic

))),ke **~^(%)**-

Three most common disease or domain under study [*]	
Infectious diseases	19 (26.0%)
Women's health	16 (21.9%)
Mental health and behavioural conditions	11 (15.1%)

Four most common geographic regions^{*}

Europe	22 (30.1%)
Africa	19 (26.0%)
Asia	14 (19.2%)
North America	12 (16.4%)

Most common type of experimental intervention*

Direct participant therapeutic intervention	46 (64.8%)
Targeted at health care professionals	32 (44.4%)
Participant health promotion or educ. intervention	12 (16.9%)

Most common type of control Intervention

Placebo, no active intervention	54 (74.0%)
Minimal application of experimental intervention	8 (11.0%)
Other	10 (13.7%)

Results -CRT Basic Characteristics (N=73)

* Not mutually exclusive

)ulkc | ^G'N(%)1 HEA1

Three most common disease or domain under study^{*}

Infectious diseases	19 (26.0%)
Women's health	16 (21.9%)
Mental health and behavioural conditions	11 (15.1%)

Results -CRT Basic Characteristics (N=73)

* Not mutually exclusive

Four most common geographic regions*	
Europe	22 (30.1%)
Africa	19 (26.0%)
Asia	14 (19.2%)
North America	12 (16.4%)

Most common type of experimental intervention^{*}

Direct participant therapeutic intervention	46 (64.8%)
Targeted at health care professionals	32 (44.4%)
Participant health promotion or educ. intervention	12 (16.9%)

Most common type of control Intervention

Placebo, no active intervention	54 (74.0%)
Minimal application of experimental intervention	8 (11.0%)
Other	10 (13.7%)

Three most common disease or domain under study^{*}

Infectious diseases	19 (26.0%)	
Women's health	16 (21.9%)	
Mental health and behavioural conditions	11 (15.1%)	

Four most common geographic regions^{*}

22 (30.1%)
19 (26.0%)
14 (19.2%)
12 (16.4%)
()

Most common type of experimental intervention*

Direct participant therapeutic intervention	46 (64.8%)
Targeted at health care professionals	32 (44.4%)
Participant health promotion or educ. intervention	12 (16.9%)

Most common type of control Intervention

Placebo, no active intervention	54 (74.0%)
Minimal application of experimental intervention	8 (11.0%)
Other	10 (13.7%)

Results -CRT Basic Characteristics (N=73)

* Not mutually exclusive

haracteristic

Three most common disease or domain under study^{*}

Infectious diseases	19 (26.0%)
Women's health	16 (21.9%)
Mental health and behavioural conditions	11 (15.1%)

Four most common geographic regions^{*}

Europe	22 (30.1%)
Africa	19 (26.0%)
Asia	14 (19.2%)
North America	12 (16.4%)

Most common type of experimental intervention^{*}

Direct participant therapeutic intervention	46 (64.8%)
Targeted at health care professionals	32 (44.4%)
Participant health promotion or educ. intervention	12 (16.9%)
Most common type of control Intervention	
Placebo, no active intervention	54 (74.0%)
Minimal application of experimental intervention	8 (11.0%)
Other	10 (13.7%)

Results -CRT Basic Characteristics (N=73)

* Not mutually exclusive

Results -CRT Design Characteristics (N=73)

* Not mutually exclusive

Cha	racte	eristic	
•			

Unit of Randomization	
Health facility	30 (41.1%)
Geographic areas (e.g. village or county)	14 (19.2%)
Health care provider	11 (15.1%)
School, School district	10 (13.7%)

Results -CRT Design Characteristics (N=73)

* Not mutually exclusive

Total Number of Clusters Randomized

Median (25 th , 75 th percentile)	29 (20,44)
<6	3 (4.1%)
6-10	5 (6.8%)
11-20	17 (23.3%)
21-40	27 (37.0%)
>40	21 (28.8%)

Size of Average Clusters, Med(25 th	, 75 th per.)	48 (20,220)
	Min, Max	4, 9065
Study Design, n(%)		
Cohort		49 (67.1%)
Cross-sectional		23 (31.5%)
A mix of cohort, cross-sectional		1 (1.4%)

Characteristic N(%)	BAL HEALTH Stltute
---------------------	-----------------------

Health facility	30 (41.1%)
Geographic areas (e.g. village or county)	14 (19.2%)
Health care provider	11 (15.1%)
School, School district	10 (13.7%)

Results -CRT Design Characteristics (N=73)

* Not mutually exclusive

	Total Number of Clusters Randomized	
	Median (25 th , 75 th percentile)	29 (20,44)
1	<6	3 (4.1%)
	6-10	5 (6.8%)
	11-20	17 (23.3%)
	21-40	27 (37.0%)
	>40	21 (28.8%)
	Size of Average Clusters, Med(25 th , 75 th per.)	48 (20,220)
	Min, Max	4, 9065
	Study Design, n(%)	
	Cohort	49 (67.1%)
	Cross-sectional	23 (31.5%)
	A mix of cohort, cross-sectional	1 (1.4%)

Characteristic	Duke	N(%)OBAL HEALTH
----------------	------	-----------------

Health facility	30 (41.1%)
Geographic areas (e.g. village or county)	14 (19.2%)
Health care provider	11 (15.1%)
School, School district	10 (13.7%)

Results -CRT Design Characteristics (N=73)

* Not mutually exclusive

Total Number of Clusters Randomized

Median (25 th , 75 th percentile)	29 (20,44)
<6	3 (4.1%)
6-10	5 (6.8%)
11-20	17 (23.3%)
21-40	27 (37.0%)
>40	21 (28.8%)

Size of Average Clusters, Med(25th, 75th per.)		48 (20,220)
	Min, Max	4, 9065
Study Design, n(%)		
Cohort		49 (67.1%)
Cross-sectional		23 (31.5%)
A mix of cohort, cross-sectional		1 (1.4%)

Health facility	30 (41.1%)
Geographic areas (e.g. village or county)	14 (19.2%)
Health care provider	11 (15.1%)
School, School district	10 (13.7%)

Results -CRT Design Characteristics (N=73)

* Not mutually exclusive

Total Number of Clusters Randomized	
Median (25 th , 75 th percentile)	29 (20,44)
<6	3 (4.1%)
6-10	5 (6.8%)
11-20	17 (23.3%)
21-40	27 (37.0%)
>40	21 (28.8%)
	х <i>У</i>
Size of Average Clusters, Med(25 th , 75 th per.)	48 (20,220)
Min, Max	4, 9065
Study Design, n(%)	
Cohort	49 (67.1%)
Cross-sectional	23 (31.5%)
A mix of cohort, cross-sectional	1 (1.4%)

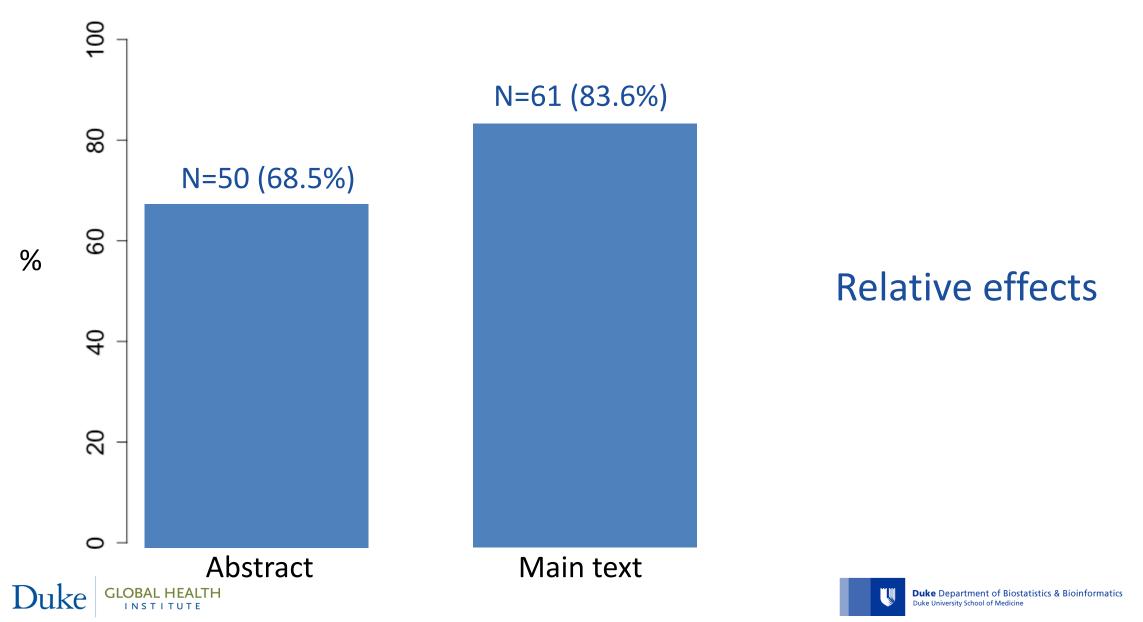
Characteristic	Dulke N(%) deal head

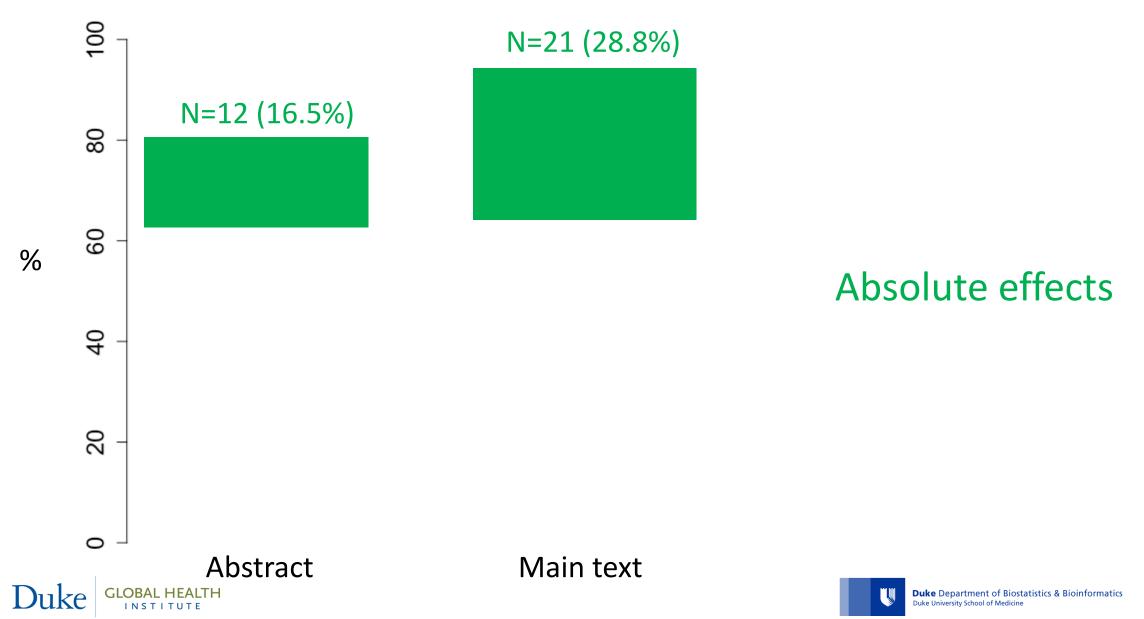
Health facility	30 (41.1%)
Geographic areas (e.g. village or county)	14 (19.2%)
Health care provider	11 (15.1%)
School, School district	10 (13.7%)

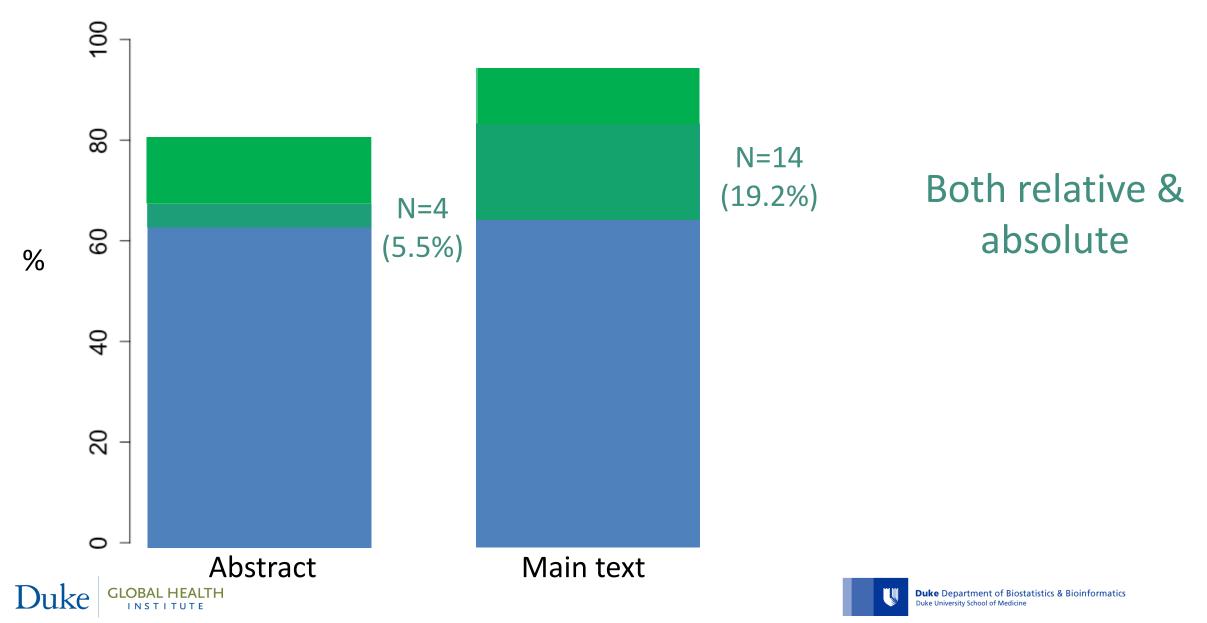
Results -CRT Design Characteristics (N=73)

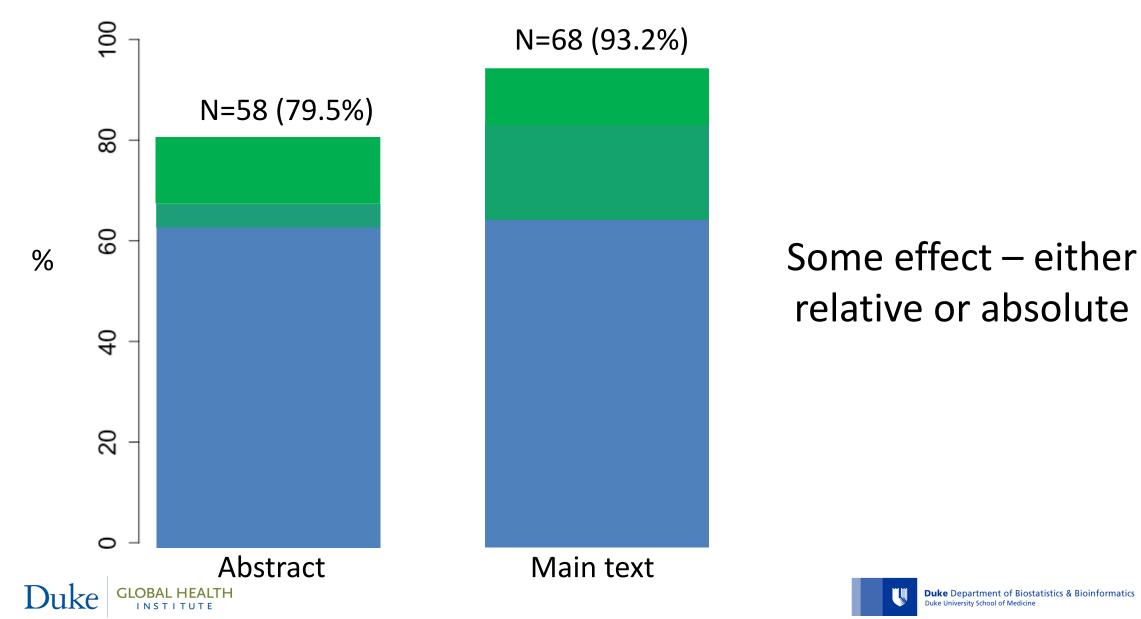
* Not mutually exclusive

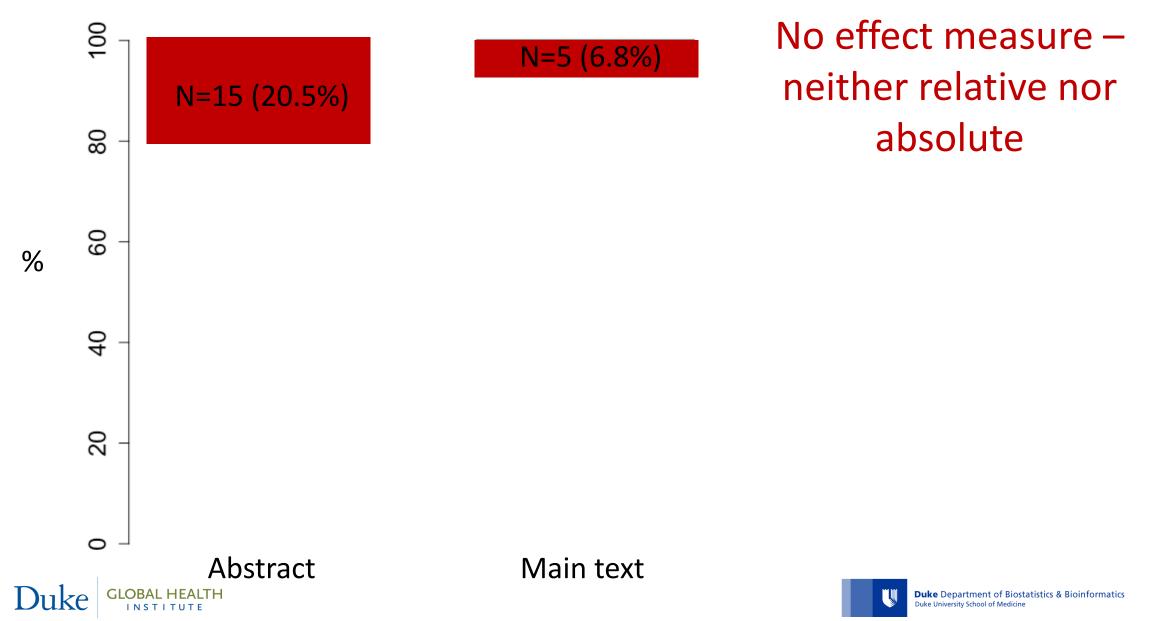
Total Number of Clusters Randomized

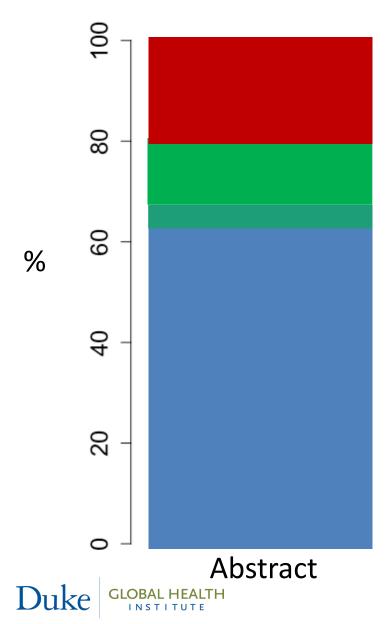

Median (25 th , 75 th percentile)	29 (20,44)
<6	3 (4.1%)
6-10	5 (6.8%)
11-20	17 (23.3%)
21-40	27 (37.0%)
>40	21 (28.8%)


Size of Average Clusters, Med(25 th	, 75 th per.)	48 (20,220)
	Min, Max	4, 9065
Study Design, n(%)		
Cohort		49 (67.1%)
Cross-sectional		23 (31,5%)
A mix of cohort, cross-sectional		1 (1.4%)







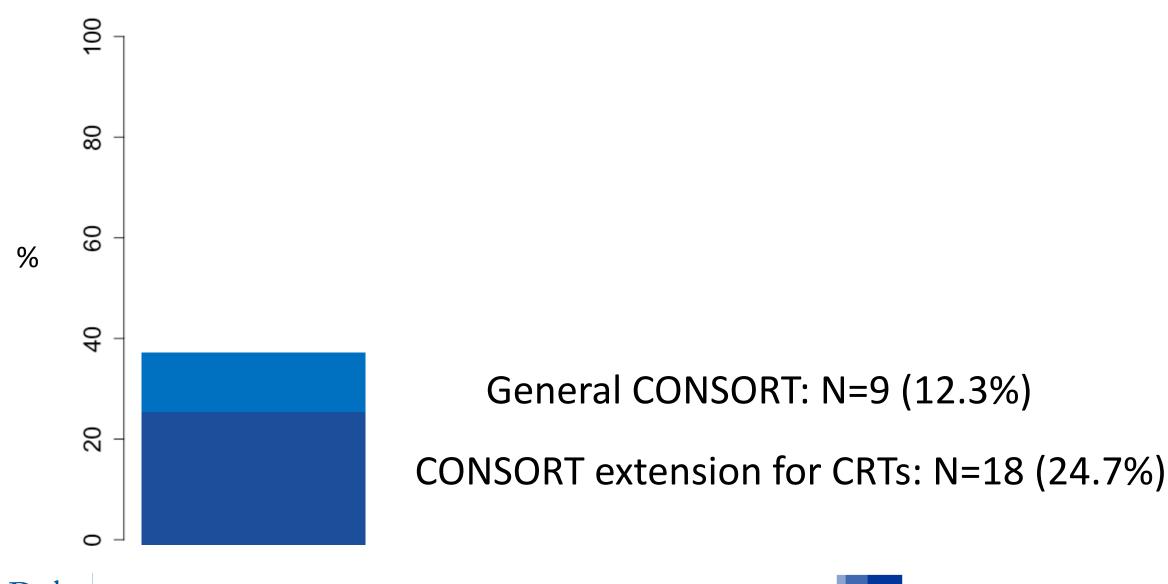


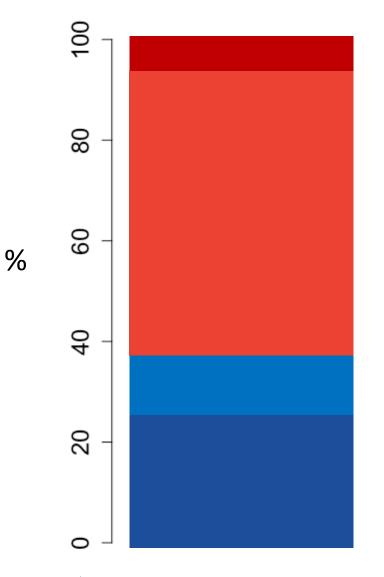
Main text

No effect measure Absolute effects

Both relative & absolute

Relative effects


Results – Reference to CONSORT (N=73)



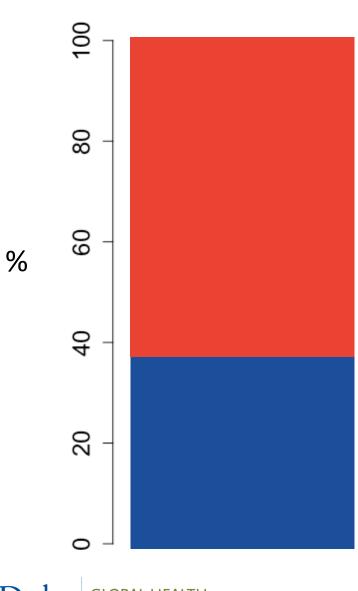
Results – Reference to CONSORT (N=73)

Duke Global Health

Results – Reference to CONSORT (N=73)

No mention of CONSORT: N=3 (4.1%)

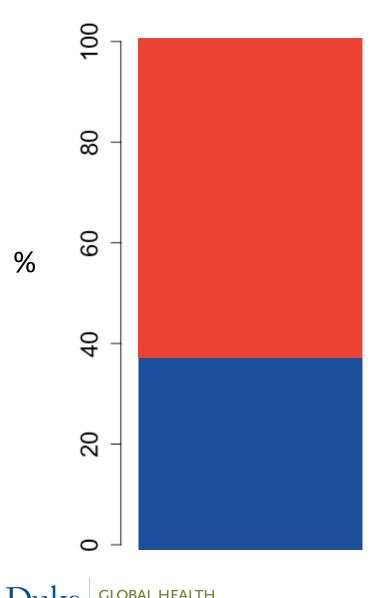
CONSORT flow-chart only: N=43 (58.9%)


General CONSORT: N=9 (12.3%)

CONSORT extension for CRTs: N=18 (24.7%)

Dulke Global Health

Results – Reference to CONSORT (N=73)


N=46 (63%) with <u>no</u> CONSORT checklist

N= 27 (37%) with <u>some</u> CONSORT checklist

Results – Reference to CONSORT (N=73)

Of N=46 with **no** CONSORT checklist 9 (19.5%) reported both abs & rel effects

Of N= 27 with **some** CONSORT checklist 5 (18.5%) reported both abs & rel effects

Dulkc | global health institute

Results – Reporting of absolute effects (of total of N=73 CRTs)

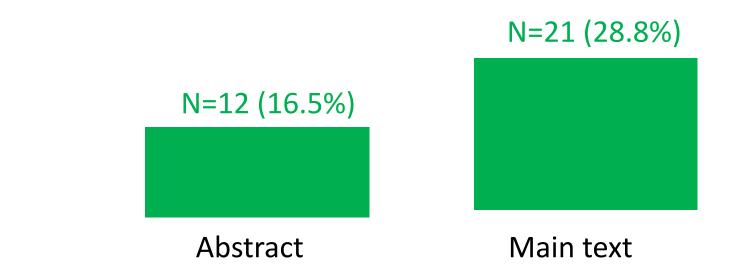
DULKO | ^{GLOBAL} HEALTH Institute

Results – Reporting of absolute effects (of total of N=73 CRTs)

Absolute effects

Abstract

Main text



DULKC | ^{GLOBAL} HEALTH

Absolute effects

Results – Reporting of absolute effects (of total of N=73 CRTs)

Type*	Abstract (N=12)	Main text (N=21)
Risk difference	9 (75%)	17 (81%)
NNT	2 (17%)	3 (14%)
Other [#]	2 (17%)	2 (10%)

N (% of 12 and 21 for abstract and main text, respectively);

* Not mutually exclusive; # Reported as difference in differences

Duke GLOBAL HEAL (baseline to follow-up)

N=50 (68.5%)

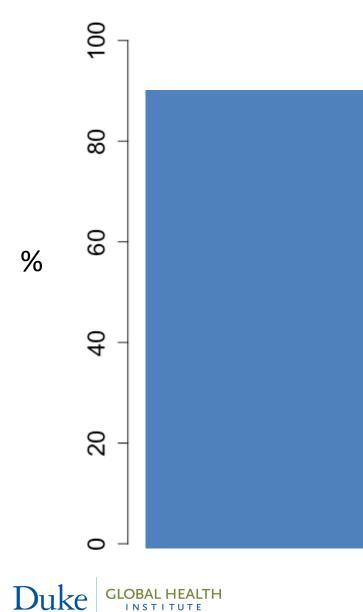
Duke

INSTIT

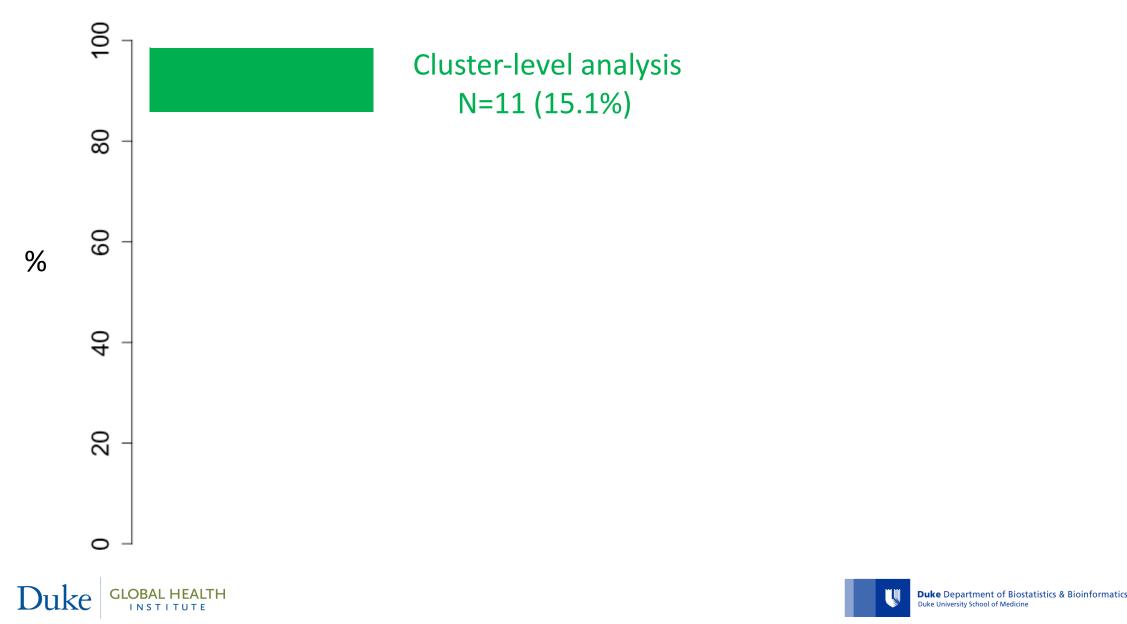
N=61 (83.6%)

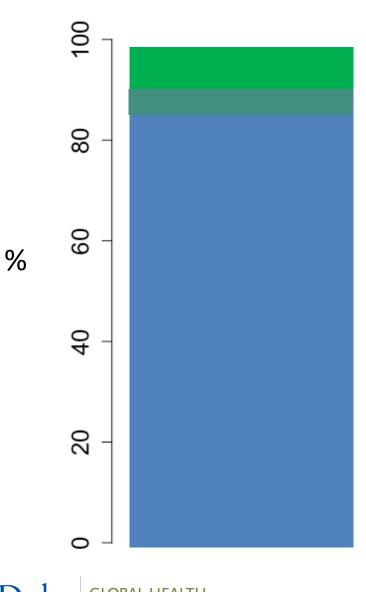
Type*	Abstract (N=50)	Main text (N=61)
Odds ratio	32 (64%)	39 (64%)
Risk ratio	16 (32%)	18 (30%)
Other [#]	3 (6%)	4 (7%)
	N=50 (68.5%)	N=61 (83.6%)

N (% of 50 and 61 for abstract and main text, respectively); * Not mutually exclusive; # In both abstract and main text: 2 ratio of odds ratio; 1 LATE; and in main text only ratio of cumulative incidence

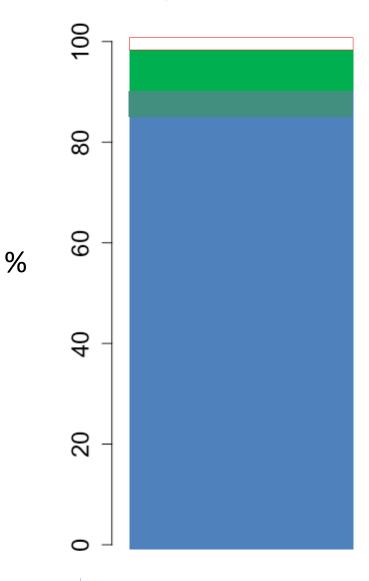

Type*	Abstract (N=50)	Main text (N=61)
Odds ratio	32 (64%)	39 (64%)
Risk ratio	<u> 16 (32%)</u>	<u>18 (30%)</u>
Other [#]	3 (6%)	4 (7%)
Duke	N=50 (68.5%)	N=61 (83.6%)

N (% of 50 and 61 for abstract and main text, respectively); * Not mutually exclusive; # In both abstract and main text: 2 ratio of odds ratio; 1 LATE; and in main text only ratio of cumulative incidence





Individual-level analysis N=64 (87.7%)



Cluster-level only: N=8 (11%)

Both analyses: N=3 (4.1%)

Individual-level only N=61 (83.6%)

Neither/Not clear: N=1 Cluster-level only: N=8 (11%)

Both analyses: N=3 (4.1%)

Individual-level only N=61 (83.6%)

Cluster-level methods used (N=11 CRTs)

Cluster-level methods used (N=11 CRTs)

Method	N (%)	
Main cluster-level summary statistic analyzed*		
Proportions	9 (82%)	
Mean residuals	1 (9%)	
Other	2 (18%)	
Method to compare cluster-level summary statistic*		
T-test	5 (46%)	
Z-test	0 (0%)	
Wilcoxon Rank Sum test	1 (9%)	
Permutation test	1 (9%)	
Other [#]	4 (36%)	

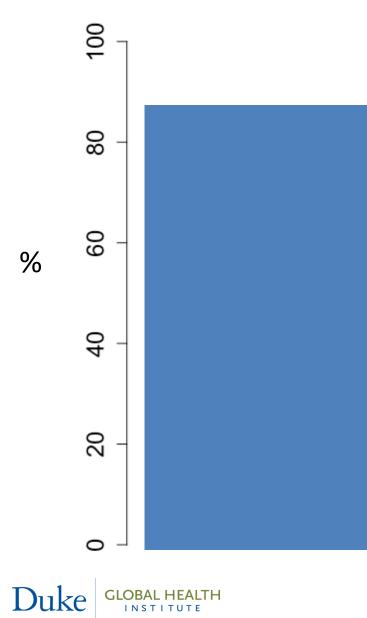
*Categories not mutually exclusive; # 2 regression of cluster-level proportions; 1 regression of logcluster proportions; 1 logistic regression of dichotomized cluster-proportions

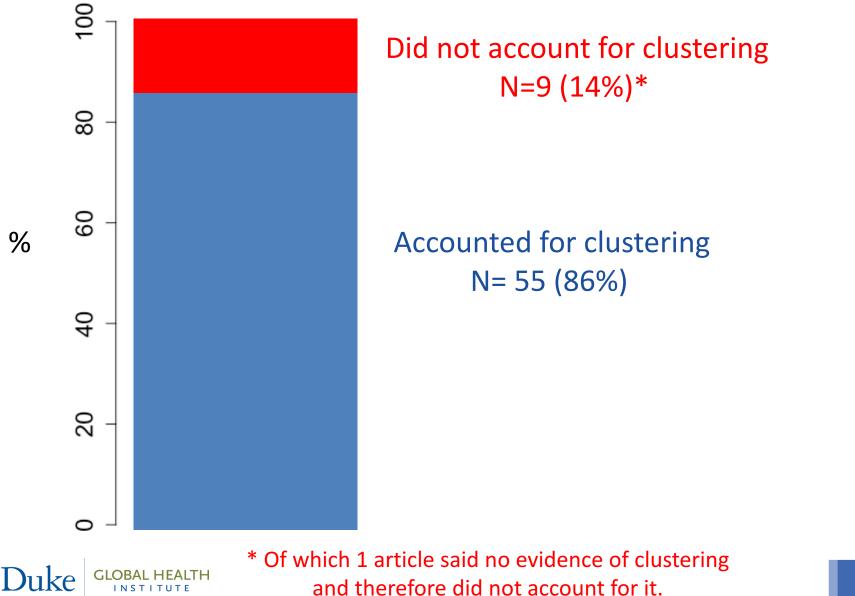
Duke

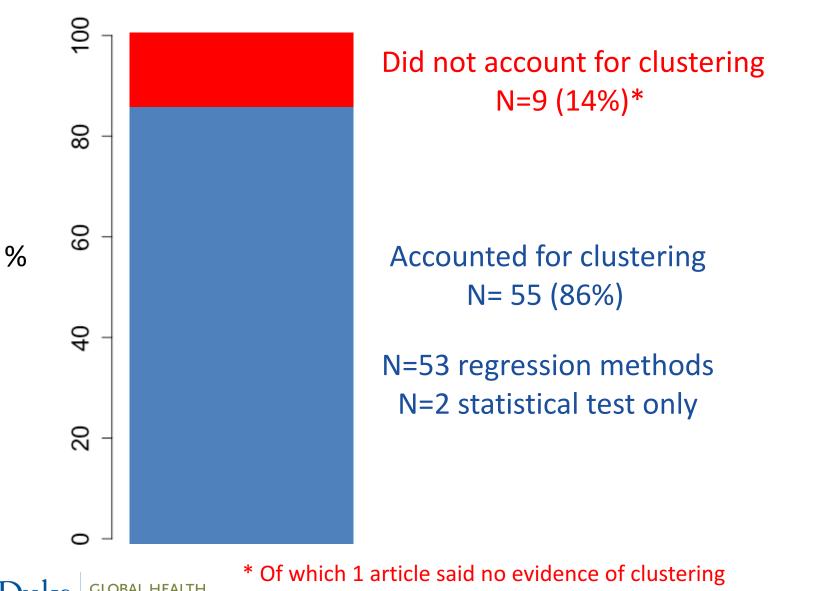
Cluster-level methods used (N=11 CRTs)

Method	N (%)
Main cluster-level summary statistic analyzed*	
Proportions	9 (82%)
Mean residuals	1 (9%)
Other	2 (18%)
Method to compare cluster-level summary statistic*	
T-test	5 (46%)
Z-test	0 (0%)
Wilcoxon Rank Sum test	1 (9%)
Permutation test	1 (9%)
Other#	4 (36%)

*Categories not mutually exclusive; # 2 regression of cluster-level proportions; 1 regression of logcluster proportions; 1 logistic regression of dichotomized cluster-proportions


Individual-level methods used (N=64 CRTs)

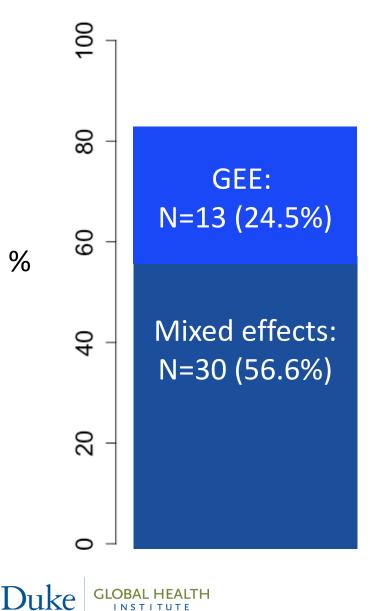

Individual-level methods used (N=64 CRTs)


Accounted for clustering N= 55 (86%)

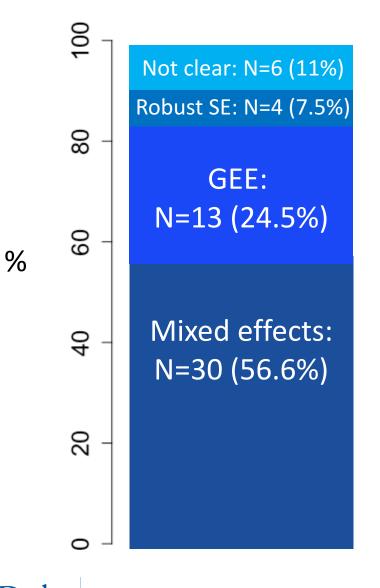
Individual-level methods used (N=64 CRTs)

Individual-level methods used (N=64 CRTs)

and therefore did not account for it.

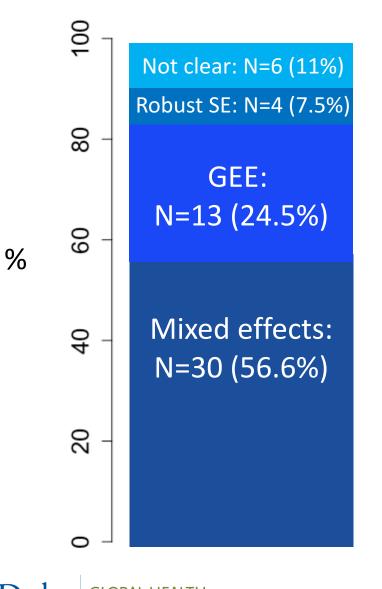

Dulke Global Health

Individual-level regression methods used (N=53 CRTs)



Individual-level regression methods used (N=53 CRTs)

W


Individual-level regression methods used (N=53 CRTs)

Duke

Individual-level regression methods used (N=53 CRTs)

- Median (IQR) # clusters:
 - 29 (20,44)
- Concern
 - Was valid inference used?
 - GEE "small sample" correction
 - DF correction for mixed model

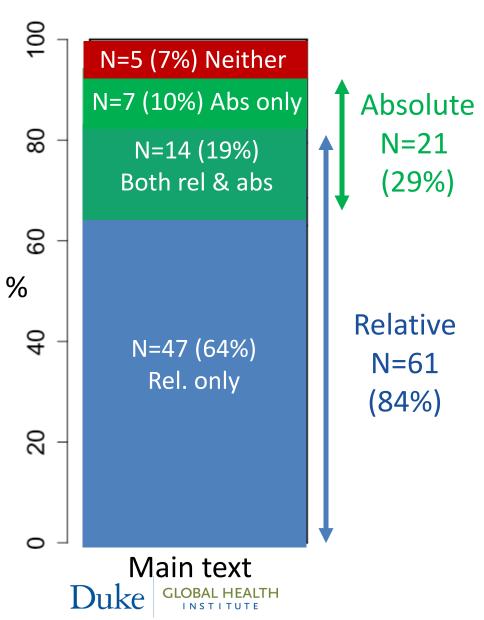
Interlude: Shameless advertising

- Implementing "small sample" correction for GEE
 - New Stata package for xtgeebcv on SSC
 - Manuscript accepted at Stata Journal
 - Joint work with John Gallis (Duke) & Fan Li (Yale)

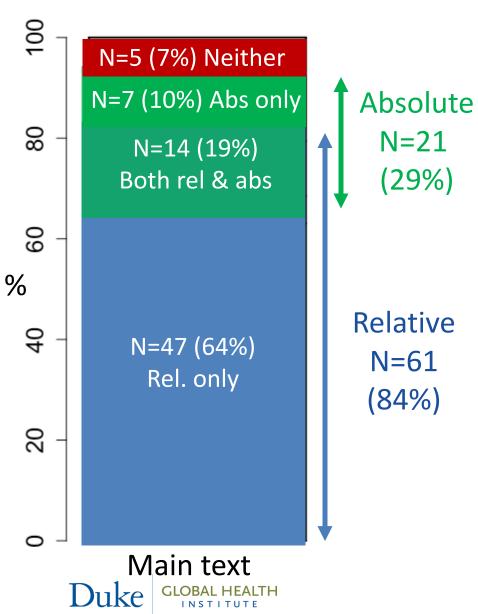
Interlude: Shameless advertising

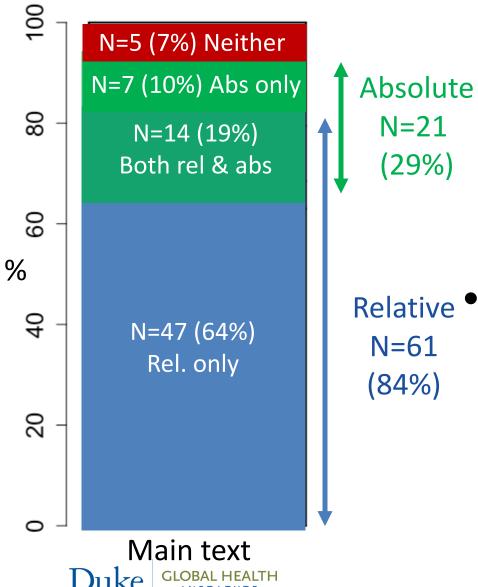
- Implementing "small sample" correction for GEE
 - New Stata package for xtgeebcv on SSC
 - Manuscript accepted at Stata Journal
 - Joint work with John Gallis (Duke) & Fan Li (Yale)
- Relative effects in RCTs
 - Manuscript accepted at Annals of Global Health (joint with John Gallis)
 - Review of methods for RR and OR
 - SAS, R, Stata, SPSS code for OR and RR estimation
 - Both iRCTs and CRTs

REVIEW OF REPORTING OF BINARY OUTCOMES IN CRTs


Goals of the review

- 1. Summarize effect measures for binary outcomes in CRTs
- 2. Compare to CONSORT recommendations
- 3. Summarize the statistical methods used
- 4. Identify opportunities to raise awareness of issues and to clarify methods to the community
- 5. Highlight the pros and cons of the "crowd-sourced" approach





• Reporting (of 73 CRTs)

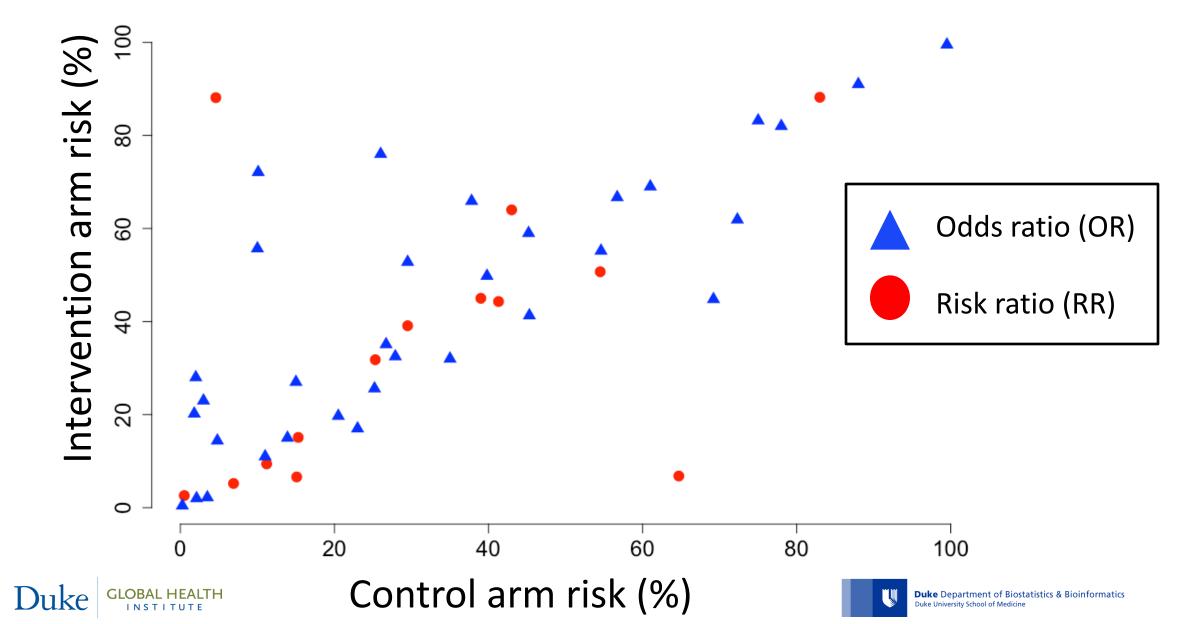
- Most (63%) no CONSORT checklist
- Most (64%) only relative effects
- Usually odds ratio
 - Potential for misinterpretation

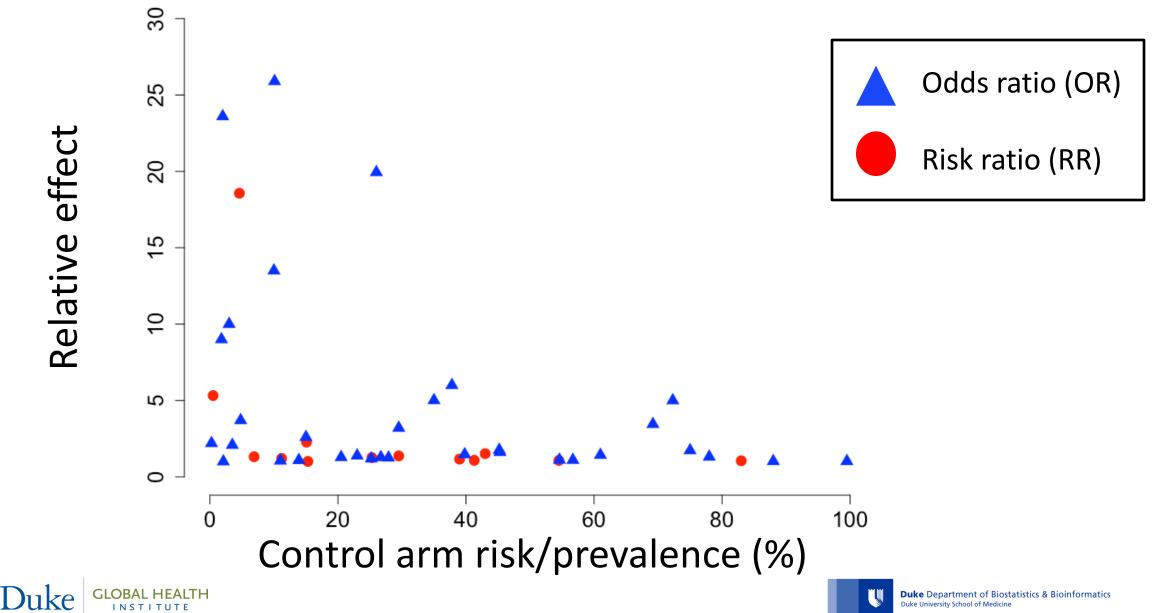
- Reporting (of 73 CRTs)
 - Most (63%) no CONSORT checklist
 - Most (64%) only relative effects
 - Usually odds ratio
 - Potential for misinterpretation

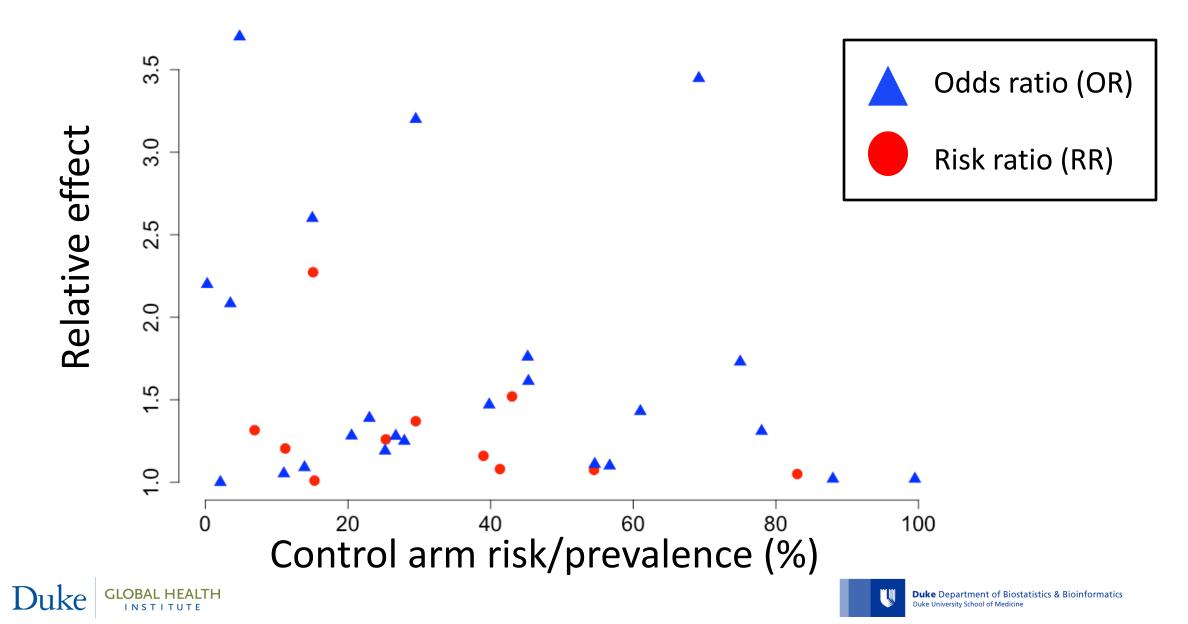
Relative • Analysis

- Methods for RR and RD may have model fitting issues vs. OR methods
 - Lack of awareness of methods?

Thank you!


Extra slides





Results – 11 Journals with >1 CRT (out of N=73 CRTs in 48 journals)

Journal Name	CONSORT 2010	CONSORT 2010	Count
	Statement	Extension to Cluster	
		Trials	
The Lancet Global Health	Explicitly Required	Explicitly Required	4
The Lancet			5
Cancer		Implicitly Required - EQUATOR	3
Plos One			8
Plos Medicine			2
BMC Health Services Research	Recommended	Implicitly Recommended	2
Bulletin of WHO		- EQUATOR	2
BMC Public Health		- No mention	2
BMC Medicine			2
Journal of Adolescent Health	No mention		3
JAIDS			3
Total Papers			34/73 (47%)
Total Journals Duke GLOBAL HEALTH			11/48 (23%) Duke Department of Biostatistics & Bioinforma Duke University School of Medicine

Background

- Expect relative effects mostly reported as odds ratios
- Potential for misinterpretation if outcome is common and OR interpreted as a risk ratio
- Methods for RR and RD less well known as those for OR
- What is done in practice?

Overview

Last year's conference + 2 other workshops: Undertook a crowd-sourced review of reporting of binary outcomes in CRTs. Today: Report back on results, seek input & share

reflections

